USN

Fifth Semester B.E. Degree Examination, June/July 2014 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Write the DFAs for the following languages over $\Sigma = \{a, b\}$
 - (i) The set of all strings ending with a & b.
 - (ii) The set of all strings not containing the substring aab.
 - (iii) Set of all strings with exactly three consecutive a's.

(10 Marks)

b. Define NFA. Convert the following NFA to its equivalent DFA. [Refer Fig.Q1(b)] (10 Marks)

Fig.Q1(b)

2 a. Consider the following \in - NFA:

	€	a	b	С
$\rightarrow p$	ф	{ p .}	{ q }	{ r }
q	{ p }	· { q }	{ r }	ф
* r	{ q }	_ { r }	φ	{ p }

- (i) Compute the ∈-closure of each state
- (ii) Convert the ∈- NFA to DFA.

(08 Marks)

b. Define Regular expression. Convert the following automation to a regular expression using state elimination technique. [Refer Fig.Q2(b)] (08 Marks)

Fig.Q2(b)

Convert the regular expression $(0+1)^* \mid (0+1)$ to an NFA.

(04 Marks)

3 a. State and prove pumping lemma for regular languages.

(10 Marks)

Define distinguishable and indistinguishable states. Minimize the following DFA using table filling algorithm.

		0	1
	Α	В	F
	A B	G	С
*	C	Α	С
	D	С	G
	E F	Н	F
	F	С	G
	G	G	E
	Н	G	C

- a. Define CFG. Write CFG for the following languages.
 - (i) $L = \{0^n 1^n \mid n \ge 1\}$
 - (ii) $L = \{ \text{String } l \text{ of a's and b's with equal number of a's and b's } \}$ (06 Marks)
 - b. What is an ambiguous grammar? Show that the following grammar is ambiguous.

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid (E) \mid a$$

where E is the start symbol. Find the unambiguous grammar.

(10 Marks)

c. Discuss the applications of CFG.

(04 Marks)

PART - B

- a. Define PDA. Construct PDA that accepts the language $L = \{ww^R \mid w \in (a+b)^* \text{ and } w^R \text{ is the } w \in (a+b)^* \text{ and } w \in (a$ 5 reversal of w }. Write IDs for the string aabbaa. (10 Marks)
 - b. Convert the following CFG to PDA and give the procedure for the same.

 $S \rightarrow aABB \mid aAA$

 $A \rightarrow aBB \mid a$

 $B \rightarrow bBB \mid A$

 $C \rightarrow a$

(10 Marks)

- a. Consider the following CFG:
 - $S \rightarrow ABC \mid BaB$

 $A \rightarrow aA \mid BaC \mid aaa$

 $B \rightarrow bBb \mid a \mid D$

 $C \rightarrow CA \mid AC$

 $D \rightarrow \in$

- (i) What are useless symbols?
- (ii) Eliminate ∈-productions unit productions and useless productions from the grammar.

(10 Marks)

b. What is CNF and GNF? Obtain the following grammar in CNF:

 $S \rightarrow aBa \mid abba$

 $A \rightarrow ab \mid AA$

 $B \rightarrow aB \mid a$

(10 Marks)

- a. Define a turing machine and explain with neat diagram, the working of a basic turing
 - b. Design a turing machine to accept the set of all palindromes over {a·b}*. Also, indicate the moves made by turing machine for the string aba. (14 Marks)
- 8 Write short notes on:
 - a. Multitape turing machine
 - b. Post's correspondence problemc. Pumping lemma for CFLd. Recursive languages.

(20 Marks)